LUtCYCtt MAtPAVERS
 PRIMARY SCHOOL

At Lytchett Matravers Primary School, we are using a range of resources to support our planning and teaching of mathematics. We use White Rose as a format for the basis of our planning through the 'loopy' teaching of skills. We are using the Loopy and White Rose Hub philosophy of:
\diamond Fluency (Practise) - using Learning Objectives from the National Curriculum
\diamond Reasoning (Evidence)
\diamond Problem-solving (Greater Depth/ Mastery)
Each of the four operations build on a solid understanding of place value; the connections between the four number operation. Within our maths lessons, we are using a CPA approach, in addition to NCETM Mastery documents, NRICH problems and other mastery problems sourced from elsewhere. It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.
\diamond Concrete representation - first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.
\diamond Pictorial representation - once they have sufficiently understood the 'hands on' experiences, they can now relate them to representations, such as a diagram or picture of the problem (either throw drawing it or it already being represented)
\diamond Abstract representation - they are now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.

The National Curriculum Aims

The national curriculum for mathematics aims to ensure that all pupils:
\diamond become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately
\diamond reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
\diamond can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions

Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum (see Progression document). This calculation policy should be used to support children to develop a deep understanding of number and calculation by using CPA through fluency, reasoning and problem solving.

Lytchett Matravers Primary School Maths Calculation Policy \quad S West 2021						
Calculation Outline						
	EYFS/ Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	\diamond Combining two parts to make a whole: part whole model \diamond Starting at the bigger number and counting on - using cubes \diamond Regrouping to make 10 using ten frame	\diamond Adding three single digits \checkmark Use of base 10 to combine two numbers	\diamond Column methodregrouping \diamond Using place value counters (up to 3 digits)	\diamond Column method regrouping (up to 4 digits)	\diamond Column methodregrouping \diamond Use of place value counters for adding decimals	\diamond Column methodregrouping \diamond Abstract methods \diamond Place value counters to be used for adding decimal numbers
	\diamond Taking away ones \diamond Counting back \diamond Find the difference \diamond Part whole model Δ Make 10 using the ten frame	\diamond Counting back \diamond Find the difference \diamond Part whole model \diamond Make 10 Δ Use of base 10	\diamond Column method with regrouping (up to 3 digits using place value counters)	\diamond Column method with regrouping (up to 4 digits)	\diamond Column method with regrouping \diamond Abstract for whole numbers \diamond Start with place value counters for decimalswith the same amount of decimal places	\diamond Column method with regrouping \diamond Abstract methods \diamond Place value counters for decimals- with different amounts of decimal places
	\diamond Recognising and making equal groups \diamond Doubling \diamond Counting in multiples \diamond Use cubes, Numicon and other objects in the classroom	\diamond Arrays- showing commutative multiplication	\checkmark Arrays $\diamond 2-\mathrm{d} \times 1-\mathrm{d}$ using base 10	\diamond Column multiplicationintroduced with place value counters. (2 and 3 digit multiplied by 1 digit)	\diamond Column multiplication \diamond Abstract only but might need a repeat of year 4 first (up to 4digit numbers multiplied by 1 or 2 digits)	\diamond Column multiplication \diamond Abstract methods (multi-digit up to 4 digits by a 2 digit number)
$\frac{.0}{i}$	\checkmark Sharing objects into groups \diamond Division as grouping e.g. I have 12 sweets and put them in groups of 3 , how many groups? \diamond Use cubes and draw round 3 cubes at a time	\diamond Division as grouping \diamond Division within arrayslinking to multiplication \diamond Repeated subtraction	\diamond Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. $\diamond 2$-d divided by 1-d using base 10 or place value counters	\diamond Division with a remainder \diamond Short division (up to 3 digits by 1 digitconcrete and pictorial)	\checkmark Short division (up to 4 digits by a 1 digit number including remainders)	\diamond Short division \diamond Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too

Addition				
Key Vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, balancing, part, part, whole				
	Objective/ Strategies	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { г } \\ & \stackrel{1}{0} \\ & \underset{\sim}{0} \end{aligned}$	Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar Some children may still need to use real obiects Use a part-part whole model	The Bar Model will be continued from EYFS as a method to support problem solving involving addition, continuing with the concrete representations and moving onto using pictorial representations of objects Some children will also move onto the abstract	Use the part-part-whole diagram to move into the abstract $\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$
	Starting at the bigger number and counting on	Start with the larger number on the bead string and then count of to the smaller number 1 by 1 to find the answer	Start at the larger number on the number line and count on in ones or in one jump to find the answer	Place the larger number in your head and count on the smaller number to find your answer $5+3=8$
	Regrouping to make 10 using ten frame This is an essential skill for column addition later	Start with the bigger number and use the smaller number to make 10 Use 10 frames to support	Use pictures or a number line. Regroup or partition the smaller number to make 10 $6+4=10$ $10+1=11$	$6+5=11$ If I am at six, how many more do I need to make 10 ? How many more do I add on now?

Addition

Key Vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, addition, column, tens boundary				
	Objective/ Strategies	Concrete	Pictorial	Abstract
	Adding three single digits	Make 10 with 2 of the digits (if possible) then add on the third digit $4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
$\begin{aligned} & N \\ & \text { N } \\ & \text { ঠ } \end{aligned}$	Adding a 2-digit number and ones	$17+5=22$ Use ten frame to make 'Magic Ten' Explore the pattern $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part-part whole and number line to model Bar Model $17+5=22$	Explore related facts $\begin{aligned} & 17+5=22 \\ & 5=17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$
	Adding a 2-digit number and multiples of 10	$25+10=35$ Explore that the ones digit does not change	 Base 10 may be used above the number line initially. The calculation will be shown alongside the number line to see the connection	$\begin{gathered} 27+10=37 \\ 27+20=47 \\ 27+\square=57 \end{gathered}$

	t Matravers Primary Sch		Calculation Policy	S West 2021
	Adding two 2-digit numbers No re-grouping	Add together the ones first, then add the tens Use the Base 10 blocks first before moving onto place value counters $24+15=$	Use number line and bridge ten using part whole if necessary. Base 10 may be used above the number line. The calculation will be shown alongside the number line to see the connection	Partitioning Recording addition in columns supports place value and prepares for formal written methods with larger numbers $\begin{gathered} \begin{array}{c} 25+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{array} \end{gathered}$ $\begin{array}{r} 30+5 \\ \hline 70+12 \\ \hline \end{array}$ Toward the end of the year, children will move to more formal recording (column method)
$\begin{aligned} & \text { N } \\ & \text { 厄ס } \\ & \underset{\sim}{\sim} \end{aligned}$	Column method without regrouping	Some children may not be ready for place value counters in Y2 Numicon may also be used	After physically using the base 10 blocks and place value counters, draw the counters to help to solve additions$24+15=$$10 s$ 1 s 0 0	$\begin{array}{r} 24+15=39 \\ +\quad 24 \\ +\frac{15}{39} \end{array}$
	Column method with regrouping	Make both numbers on a place value grid Add up the ones and regroup 10 ones for 1 ten	Using place value counters, draw the counters to help to solve additions	$\begin{gathered} 49+23=72 \\ 40+9 \\ \frac{20+3}{60+12}=72 \end{gathered}$

Addition

Key Vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, addition, column, tens boundary, regroup, exchange

	Objective/ Strategies	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { m } \\ & \text { N } \\ & \underset{\sim}{0} \end{aligned}$	Add numbers with up to 3-digits using formal written Column addition (no regrouping)	 Using manipulatives (base-10, numicon, counters), line up hundreds, tens and ones They should be secure with using PV counters before moving onto pictorial The calculation will be shown alongside the model used to see the connection	Draw, in a PV frame, the manipulatives, that they are using Secure knowledge of representation with the PV columns The calculation will be shown alongside the model to see the connection	Move onto recording more formally.
	Add numbers with up to 3-digits, using formal written methods Column addition (regrouping)	 Can use base-10, counters, mulitilink		$\begin{array}{r} 146 \\ +\frac{527}{\frac{673}{1}} \end{array}$

Addition

Key Vocabulary: addition, add, more, and make, sum, total, altogether, double, near double, half, halve, tens boundary, hundreds boundary, regrouping, exchanging, decimal, decimal point

Addition

Key Vocabulary: addition, add, more, and make, sum, total, altogether, double, near double, half, halve, tens boundary, hundreds boundary, thousand boundary, regrouping, exchanging, decimals, decimal point

Subtraction				
	Objective/ Strategies	Concrete	Pictorial	Abstract
	Knows that a group of things change in quantity when something is taken away Find one less from a group of five objects, then ten objects In practical activities and discussion, beginning to use the vocabulary involved in subtracting Using quantities and objects, they subtract two single digit numbers and count back to find the answer	Use toys and general classroom resources for children to physically manipulate, group/ regroup Use specific maths resources such as counters, bead-strings, multi-link, Numicon etc. Use visual supports such as ten frames, part part whole and subtraction mats, with the physical objects and resources that can be manipulated	A group of pictures for children to cross out or cover quantities to support subtraction Use visual supports such as ten frames, part part whole and bar model with pictures/icons	A focus on symbols and numbers to form a calculation$7-3=4$3 $?$ 7 There is no expectation for children to be able to record a number sentence/ addition calculation

Subtraction

Key Vocabulary: equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...

	Objective/ Strategies	Concrete	Pictorial	Abstract
	Subtract one-digit and two-digit numbers to 20, including 0 Taking away ones	Use physical objects, counters, cubes, etc to show how objects can be taken away Some children may still need to use real $4-2=2$ obiects	Cross out drawn objects to show what has been taken away	Use the part-part-whole diagram to move into the abstract $\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$
	Counting back	Make the larger number in your subtraction with the beads or counters. Move the beads along your bead string, or remove counters as you count backwards in ones $13-4=9$	Count back on a number line or number track. Start at the bigger number and count back the smaller number, showing the jumps on the number line $13-4=9$	$13-4=9$ Put 13 in your head, count back 4. What number are you at? Use your fingers to help

Lytchett Matravers Primary	Maths Calculation Policy		S West 2021
Find the difference	Compare amounts and objects to find the difference Use cubes to build towers or make bars to find the difference. Use basic bar models with items to find the difference	Count on to find the difference Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Draw bars to find the difference between 2 numbers	Hannah has 8 goldfish. Helen has 3 goldfish. Find the difference between the number of goldfish the girls have
Represent and use number bonds and related subtraction facts within 20 Part-part whole model	Link to addition. Use Part Whole Model to show the inverse If 10 is the whole and 6 is one of the parts, what is the other part? $10-6=4$	Use a pictorial representation of objects to show the Part-Whole model $8-2=6$	Move to using numbers within the part whole model $10-6=4$
Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then take away one more so you have taken away 5 You are then left with the answer of 9	 Start at 13. Take away 3 to reach 10 . Then, take away the remaining 4 so you have taken away 7 altogether. You have reached your answer	$13-7=$ How many do we take off to reach the next 10 ? How many do we have left to take off?

Subtraction

Key Vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, addition, column, tens boundary

	Objective/ Strategies	Concrete		Pictorial	Abstract		
$\begin{aligned} & \text { N } \\ & \text { N } \\ & \underset{\sim}{\sim} \end{aligned}$	Subtract a two-digit number and ones, a two-digit number and tens, two two-digit numbers Partitioning to subtract without reGrouping: 'Friendly numbers'	$34-13=21$ Use Base-10 to show how to partition the number when subtracting without regrouping The calculation will be shown alongside the number line to see the connection		Draw representations of Base-10 and cross $43-21=22$ off The calculation will be shown alongside the number line to see the connection	$43-21=22$ Recording subtraction in columns supports place value and prepares for formal written method with larger numbers Towards the end of the year, move onto more formal recording using partitioning method		

Key Vocabulary: equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/ less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, tens, ones, hundreds, regrouping, exchanging

Objective/ Strategies \quad Concrete $1 \quad$ Pictorial \quad Abstract \quad.

Lytchett Matravers Primary Sc		s Calculation Policy	S West 2021
Introduce decimal subtraction through context of money	Use Base-10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange 1 of my tens for 10 ones Now I can subtract my ones Can use base-10, counters, mulitilink Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount		

Subtraction

Key Vocabulary: equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, hundred thousands, ten thousands, thousands, hundreds, tens, ones, regroup, exchange, decimal points, place value

Objective/ Strategies	Concrete
	Continue to use base-10 or place value counters to subtract, exchanging tens for ten ones, and ten tens for a hundred and ten hundreds for a thousand, ten thousands for
100,000 etc	

Column method -

regrouping

 Introduce decimal subtraction through context of moneyAdd several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points.

Introduce decimals with the same number of decimal places and different
Money can be used here; place value needs to be secure with the setting up of digits

The calculation will be shown alongside the manipulative used to see the connection

As children move on to decimals, money and decimal place value counters can be used to support learning

Introduce decimal place value counters and mode exchange for addition

The calculation will be shown alongside the model to see the connection

EXAMPLE OF COUNTER/ MONE DECIMLAS

Multiplication

Key Vocabulary: Groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up, inverse

	Objective/ Strategies	Concrete	Pictorial	Abstract
	Doubling	Use practical activities using manipulatives including cubes and Numicon	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together to demonstrate doubling
$\begin{aligned} & \text { 「 } \\ & \text { ָ } \\ & \underset{\sim}{\sim} \end{aligned}$	Counting in Multiples	Count the groups as skip counting; may use their fingers	Make representations to show counting in multiples	Count in multiples of a number aloud Write sequences with multiples of numbers $\begin{gathered} 2,4,6,8,10 \\ 5,10,15,20,25,30 \end{gathered}$
	Repeated Addition	Use different objects to add equal groups	There are 3 plates. Each plate has 2 star biscuits low ma are $\mathrm{t}^{\text {t...- }}$ $2+5<6$ $5+5+5=15$	Write addition sentences to describe objects and pictures $2+2+2=6$

Use representations of arrays to show different calculations and explore commutativity

$$
\begin{aligned}
& 3 \times 4=12 \\
& 4 \times 3=12
\end{aligned}
$$

Lytchett Matravers Primary Scho	Maths Calculation Policy			S West 2021
Multiplication is commutative	Create arrays using counters and cubes and calculations and explore commutativity Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer		$\begin{aligned} & 3 \times 4=12 \\ & 4 \times 3=12 \\ & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$	
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other			$2 \times 4=8$ $4 \times 2=8$ $8 \div 2=4$ $8 \div 4=2$ $8=2 \times 4$ $8=4 \times 2$ $2=8 \div 4$ $4=8 \div 2$ Show all 8 related fact family sentences.	

Multiplication

Key Vocabulary: Groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up, inverse

Objective/ Strategies Concrete
Pictorial
Abstract

Multiplication

Key Vocabulary: Groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up, inverse, derive

Multiplication

Key Vocabulary: Groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up, inverse, derive, factor pairs, composite numbers, prime number, factors, squared, cubed

Objective/ Strategies Concrete

Division

Key Vocabulary: Share, share equally, one each, two each..., group, groups of, lots of, arrays, divide, divided by, divided into, division, grouping, number line, left, left over

Objective/ Strategies

Concrete	Pictorial	Abstract
I have 10 cubes, can you share them equally in 2 groups?	Use pictures or shapes to share quantities Use bar modelling to show and support understanding $12 \div 4=3$	Share 10 sweets between 2 children $10 \div 2=5$ Divide 10 into 2 groups How many are in each group?

Division

Key Vocabulary: Share, share equally, one each, two each..., group, groups of, lots of, arrays, divide, divided by, divided into, division, grouping, number line, left, left over

	Objective/ Strategies	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { m } \\ & \stackrel{y}{0} \\ & \underset{\sim}{0} \end{aligned}$	Division as grouping	Use cubes, counters, objects or place value counters to aid understanding 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems $\begin{gathered} 10 \div 2= \\ 20 \end{gathered}$? \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24 $24 \div 6=4$

Division

Key Vocabulary: Share, share equally, one each, two each..., group, groups of, lots of, arrays, divide, divided by, divided into, division, grouping, number line, left, left over

Objective/ Strategies

Division

Key Vocabulary: share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, product, division facts, inverse, derive, formal written method

Division

Key Vocabulary: share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, product, division facts, inverse, derive, formal written method

Long Division
Step 1 - a remainder in the ones

> | hto |
| :---: |
| 041 R 1 |
| $4 \longdiv { 1 6 5 }$ |

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .

> | th h to |
| :--- |
| $0400 \mathrm{R7}$ |
| $8 \longdiv { 3 2 0 7 }$ |

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .
h t o
$4 \longdiv { 0 6 1 }$
-4
When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
$\begin{array}{r} \stackrel{2}{2}^{2} \\ 2 \longdiv { 5 8 } \end{array}$	$\begin{gathered} t 0 \\ 2 \longdiv { 2 } \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$	$\begin{array}{r} 29 \\ 2 \longdiv { 5 8 } \\ -41 \\ \hline 18 \end{array}$
Two goes into 5 two times，or 5 tens $\div 2=2$ whole tens－－but there is a remainder！	To find it，multiply $2 \times 2=4$ ，write that 4 under the five，and subtract to find the remainder of 1 ten．	Next，drop down the 8 of the ones next to the leftover 1 ten．You combine the remainder ten with 8 ones，and get 18.

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
t 。	t 。	t 。
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
$-\frac{4}{18}$	－4 18	$\frac{-4}{18}$
	－18	－18
	0	0
Divide 2 into 18．Place 9 into the quotient．	Multiply $9 \times 2=18$ ，write that 18 under the 18 ，and subtract．	The division is over since there are no more digits in the dividend．The quotient is 29 ．

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{aligned} & \stackrel{n}{t o}_{1}^{2} \\ & 2 \longdiv { 2 7 8 } \end{aligned}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{aligned} & h t o \\ & 2 \longdiv { 2 7 8 } \\ & \frac{-2}{0} \end{aligned}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{aligned} & h t \circ \\ & 2 \longdiv { 2 7 8 } \\ & \frac{-2}{0} \frac{1}{7} \end{aligned}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{aligned} & \quad \begin{array}{l} h t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -2 \\ \hline 07 \end{array} \end{aligned}$ Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} h t \circ \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{aligned} & h t \circ \\ & 13 \\ & 2 \longdiv { 2 7 8 } \\ & \frac{-2}{07} \\ & -\quad 6 \\ & \hline 18 \end{aligned}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h t o \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -27 \\ -\quad 6 \\ \hline 18 \end{gathered}$	$\begin{aligned} & h t o \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & -\frac{2}{0} 7 \\ & -\quad 6 \\ & \hline 18 \end{aligned}$	$\begin{gathered} h t \circ \\ 2 \longdiv { 1 3 9 } \\ -278 \\ \hline 07 \\ -\quad 6 \\ \hline 18 \end{gathered}$

